【AI在内容审核方面还很糟糕】

Facebook的人工智能算法用来查找和解决、删除垃圾邮件、仇恨言论和恐怖主义宣传的帖子的艰巨任务,该公司最近公布了人工智能算法成功找到危险内容的频率,尽管积累长达数年的自动化内容审核数据,但当代的AI仍然经常无法理解意图与语境。

Human Help Wanted: Why AI Is Terrible at Content Moderation

Every day, Facebook's artificial intelligence algorithms tackle the enormous task of finding and removing millions of posts containing spam, hate speech, nudity, violence, and terrorist propaganda. And though the company has access to some of the world's most coveted talent and technology, it's struggling to find and remove toxic content fast enough.

 

OpinionsIn March, a shooter in New Zealand live-streamed the brutal killing of 51 people in two mosques on Facebook. But the social-media giant's algorithms failed to detect the gruesome video. It took Facebook an hour to take the video down, and even then, the company was hard-pressed to deal with users who reposted the video.

 

Facebook recently published figures on how often its AI algorithms successfully find problematic content. Though the report shows that the company has made tremendous advances in its years-long effort to automate content moderation, it also highlights contemporary AI's frequent failure to understand context.

 

Not Enough Data

Artificial neural networks and deep-learning technologies, at the bleeding edge of artificial intelligence, have helped automate tasks that were previously beyond the reach of computer software. Some of these tasks are speech recognition, image classification, and natural language processing (NLP).

 

In many cases, the precision of neural networks exceeds that of humans. For example, AI can predict breast cancer five years in advance. But deep learning also has limits. Namely, it needs to be "trained" on numerous examples before it can function optimally. If you want to create a neural network that detects adult content, for instance, you must first show it millions of annotated examples. Without quality training data, neural networks make dumb mistakes.

 

Artificial Intelligence AI

 

Last year, Tumblr declared that it would ban adult content on its website and use machine learning to flag posts that contained NSFW images. But a premature deployment of its AI model ended up blocking harmless content such as troll socks, LED jeans, and a picture of Joe Biden.

 

And in many cases, such as violent content, there aren't enough examples to train a reliable AI model. "Thankfully, we don't have a lot of examples of real people shooting other people," Yann LeCun, Facebook's chief artificial-intelligence scientist, told Bloomberg.

 

Neural networks also lack situational awareness. They make statistical comparisons only between new content and examples they've been shown. Even when trained on many examples, neural networks act erratically when faced with edge cases that look different from their training data.

 

Facebook's AI failed to detect the New Zealand massacre video because it was streamed from a first-person viewpoint and didn't resemble anything uploaded in the past. A person reviewing the video would immediately be aware of its violent content. But Facebook's neural networks, which only extract and compare patterns of pixels, dismissed it as safe.

 

Context and Intent

Facebook could have trained its AI on plenty of violent scenes from movies to enhance its moderation ability. But this would have only confused the AI, because it wouldn't be able to tell the difference between movies and real violence and would have blocked both.

 

This is because one of the most pressing problems facing neural networks is their inability to understand context and intent. Facebook CEO Mark Zuckerberg explained this in layman's terms in a call with analysts last year, on which he said, "It's much easier to make an AI system that can detect a nipple than it is to determine what is linguistically hate speech."

 

A well-trained neural network can be very good at detecting nudity. According to Facebook's figures, its AI can detect nudity with 96 percent accuracy. But it will struggle to tell the difference between safe nudity—say, breastfeeding or Renaissance art—and banned content such as sexual activity.

 

In 2016, Facebook removed a photo of the Vietnam War on the page of Norway's Prime Minister because it contained the image of a naked 9-year-old girl fleeing after a napalm attack. The company's algorithms flagged the iconic picture as child pornography; Facebook later apologized to the PM and restored the post.

 

In 2017, YouTube acknowledged that its AI mistakenly flagged videos posted by journalists and researchers as extremist content because it couldn't tell the difference between videos that promote extremism and reports on the topic.

 

Things get even more complicated when AI has to deal with speech or text. Deep-learning algorithms are efficient at capturing and evaluating temporal consistency. That's why they're very good at recognizing speech, converting audio to text, and detecting spam. But they fall apart when they're tasked with detecting hate speech and harassment.

原文链接https://www.pcmag.com/news/369398/human-help-wanted-why-ai-is-terrible-at-content-moderation


Comments are closed.



无觅相关文章插件